Średnia ruchoma Ten przykład pokazuje, w jaki sposób obliczyć średnią ruchomą szeregu czasowego w Excelu. Średnia ruchoma służy do łagodzenia nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznawania trendów. 1. Najpierw przyjrzyjmy się naszej serii czasowej. 2. Na karcie Dane kliknij Analiza danych. Uwaga: nie można znaleźć przycisku Analiza danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz średnią ruchomą i kliknij OK. 4. Kliknij pole Input Range i wybierz zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij pole Zakres wyjściowy i wybierz komórkę B3. 8. Narysuj wykres tych wartości. Objaśnienie: ponieważ ustawiliśmy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje rosnący trend. Program Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczającej liczby poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i odstępu 4. Wniosek: Im większy przedział, tym bardziej wygładzone są szczyty i doliny. Im mniejszy interwał, tym bardziej zbliżone są średnie ruchome do rzeczywistych punktów danych. Częstotliwość Odpowiedź działającego filtra średniego Odpowiedź częstotliwościowa systemu LTI to DTFT odpowiedzi impulsowej, Odpowiedź impulsowa średniej ruchomej L jest równa Ponieważ filtr średniej ruchomej jest FIR, odpowiedź częstotliwościowa zmniejsza się do sumy skończonej. Możemy użyć bardzo użytecznej tożsamości, aby napisać odpowiedź częstotliwościową, jako że pozwoliliśmy ae minus jomega. N 0, i M L minus 1. Możemy być zainteresowani wielkością tej funkcji, aby określić, które częstotliwości przechodzą przez filtr, a które są tłumione. Poniżej znajduje się wykres wielkości tej funkcji dla L 4 (czerwony), 8 (zielony) i 16 (niebieski). Oś pozioma zawiera się w zakresie od zera do pi radianów na próbkę. Należy zauważyć, że we wszystkich trzech przypadkach charakterystyka częstotliwościowa ma charakter dolnoprzepustowy. Stały komponent (częstotliwość zerowa) na wejściu przechodzi przez filtr nieskorygowany. Niektóre wyższe częstotliwości, takie jak pi 2, są całkowicie eliminowane przez filtr. Jeśli jednak chodzi o zaprojektowanie filtra dolnoprzepustowego, to nie zrobiliśmy tego zbyt dobrze. Niektóre z wyższych częstotliwości są tłumione tylko o współczynnik około 110 (dla średniej ruchomej 16 punktów) lub 13 (dla czteropunktowej średniej ruchomej). Możemy zrobić o wiele lepiej. Powyższy wykres został utworzony przez następujący kod Matlab: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) (1-exp (- iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) wykres (omega, abs (H4) abs (H8) abs ( H16)) axis (0, pi, 0, 1) Copyright copy 2000- - University of California, BerkeleyPrzy obliczaniu ruchomej średniej ruchomej, ustawienie średniej w połowie okresu ma sens W poprzednim przykładzie obliczyliśmy średnią z pierwszych 3 okresy czasu i umieścił go obok okresu 3. Mogliśmy umieścić średnią w środku przedziału czasowego trzech okresów, to znaczy obok okresu 2. Działa to dobrze w okresach nieparzystych, ale nie tak dobrze dla okresy czasu. Więc gdzie ustawilibyśmy pierwszą średnią ruchomą, gdy M 4 Technicznie, średnia ruchoma spadłaby o t 2,5, 3,5. Aby uniknąć tego problemu, wygładzamy MA za pomocą M 2. W ten sposób wygładzamy wygładzone wartości. Jeśli uśredniamy parzystą liczbę terminów, musimy wygładzić wygładzone wartości. Poniższa tabela pokazuje wyniki przy użyciu M 4.
Comments
Post a Comment